Exercise 80

The graph of any quadratic function $f(x)=a x^{2}+b x+c$ is a parabola. Prove that the average of the slopes of the tangent lines to the parabola at the endpoints of any interval $[p, q]$ equals the slope of the tangent line at the midpoint of the interval.

Solution

Take the derivative of the function representing the parabola.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(a x^{2}+b x+c\right) \\
& =\frac{d}{d x}\left(a x^{2}\right)+\frac{d}{d x}(b x)+\frac{d}{d x}(c) \\
& =a \frac{d}{d x}\left(x^{2}\right)+b \frac{d}{d x}(x)+\frac{d}{d x}(c) \\
& =a(2 x)+b(1)+(0) \\
& =2 a x+b
\end{aligned}
$$

The slope at the endpoint $x=p$ is

$$
f^{\prime}(p)=2 a p+b,
$$

the slope at the endpoint $x=q$ is

$$
f^{\prime}(q)=2 a q+b,
$$

and the slope at the midpoint $x=(p+q) / 2$ is

$$
f^{\prime}\left(\frac{p+q}{2}\right)=2 a\left(\frac{p+q}{2}\right)+b=a(p+q)+b .
$$

Take the average of slopes at the endpoints.

$$
\frac{f^{\prime}(p)+f^{\prime}(q)}{2}=\frac{(2 a p+b)+(2 a q+b)}{2}=\frac{2 a(p+q)+2 b}{2}=a(p+q)+b
$$

Therefore, the average of the slopes of the tangent lines to the parabola at the endpoints of any interval $[p, q]$ equals the slope of the tangent line at the midpoint of the interval.

$$
\frac{f^{\prime}(p)+f^{\prime}(q)}{2}=f^{\prime}\left(\frac{p+q}{2}\right)
$$

